0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 AND
↳5 IDP
↳6 IDPtoQDPProof (⇒)
↳7 QDP
↳8 UsableRulesProof (⇔)
↳9 QDP
↳10 QReductionProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 YES
↳14 IDP
↳15 IDPNonInfProof (⇒)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
public class List {
Tree value;
List next;
public List(Tree value, List next) {
this.value = value;
this.next = next;
}
}
public class MirrorTree {
public static void main(String[] args) {
Random.args = args;
Tree tree = Tree.createTree();
//Now mirror the left-most path:
mirror(tree);
}
public static void mirror(Tree tree) {
Tree cur = tree;
while (cur != null) {
Tree t = cur.left;
cur.left = cur.right;
cur.right = t;
cur = cur.right;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
public class Tree {
Tree left;
Tree right;
Object value;
public Tree(Tree l, Tree r) {
this.left = l;
this.right = r;
}
public Tree() {
}
public static Tree createNode() {
if (Random.random() == 0) {
return null;
}
Tree result = new Tree();
return result;
}
public static Tree createTree() {
Tree result = createNode();
List list = new List(result, null);
int counter = Random.random();
while (counter > 0 && list != null) {
Tree first = list.value;
list = list.next;
if (first != null) {
Tree left = createNode();
Tree right = createNode();
first.left = left;
first.right = right;
list = new List(left, list);
list = new List(right, list);
}
counter--;
}
return result;
}
public static void main(String[] args) {
Random.args = args;
createTree();
}
}
Generated 34 rules for P and 2 rules for R.
Combined rules. Obtained 3 rules for P and 1 rules for R.
Filtered ground terms:
5566_0_mirror_Store(x1, x2) → 5566_0_mirror_Store(x2)
3787_0_mirror_NULL(x1, x2, x3) → 3787_0_mirror_NULL(x2, x3)
Tree(x1, x2, x3) → Tree(x2, x3)
3971_0_mirror_Return(x1) → 3971_0_mirror_Return
Filtered duplicate args:
3787_0_mirror_NULL(x1, x2) → 3787_0_mirror_NULL(x2)
Finished conversion. Obtained 3 rules for P and 1 rules for R. System has no predefined symbols.
Generated 194 rules for P and 134 rules for R.
Combined rules. Obtained 8 rules for P and 20 rules for R.
Filtered ground terms:
8486_0_createTree_LE(x1, x2, x3, x4) → 8486_0_createTree_LE(x2, x3, x4)
List(x1, x2, x3) → List(x2, x3)
Tree(x1) → Tree
Cond_8685_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5, x6) → Cond_8685_1_createTree_InvokeMethod1(x1, x3, x4)
2588_0_createNode_Return(x1, x2) → 2588_0_createNode_Return
8685_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 8685_1_createTree_InvokeMethod(x1, x2, x3, x4)
Cond_8685_1_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_8685_1_createTree_InvokeMethod(x1, x3, x4)
2422_0_createNode_Return(x1, x2) → 2422_0_createNode_Return
8685_0_createNode_InvokeMethod(x1) → 8685_0_createNode_InvokeMethod
Cond_8665_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5, x6) → Cond_8665_1_createTree_InvokeMethod1(x1, x3, x4)
8665_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 8665_1_createTree_InvokeMethod(x1, x2, x3, x4)
Cond_8665_1_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_8665_1_createTree_InvokeMethod(x1, x3, x4)
Cond_8486_0_createTree_LE1(x1, x2, x3, x4, x5) → Cond_8486_0_createTree_LE1(x1, x3, x4, x5)
8665_0_createNode_InvokeMethod(x1) → 8665_0_createNode_InvokeMethod
8558_0_createNode_InvokeMethod(x1) → 8558_0_createNode_InvokeMethod
Cond_8486_0_createTree_LE(x1, x2, x3, x4, x5) → Cond_8486_0_createTree_LE(x1, x3, x4, x5)
2537_0_createNode_InvokeMethod(x1, x2) → 2537_0_createNode_InvokeMethod
java.lang.ArrayIndexOutOfBoundsException(x1) → java.lang.ArrayIndexOutOfBoundsException
java.lang.IndexOutOfBoundsException(x1) → java.lang.IndexOutOfBoundsException
2226_0_random_ArrayAccess(x1, x2, x3) → 2226_0_random_ArrayAccess(x2, x3)
Cond_2376_0_createNode_NE(x1, x2, x3) → Cond_2376_0_createNode_NE(x1, x3)
2376_0_createNode_NE(x1, x2) → 2376_0_createNode_NE(x2)
2272_0_random_IntArithmetic(x1, x2, x3, x4) → 2272_0_random_IntArithmetic(x2, x3)
2667_0_createNode_InvokeMethod(x1, x2) → 2667_0_createNode_InvokeMethod
java.lang.NullPointerException(x1) → java.lang.NullPointerException
2576_0_createNode_InvokeMethod(x1, x2) → 2576_0_createNode_InvokeMethod
8752_0_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → 8752_0_createTree_InvokeMethod(x2, x3, x4, x5)
8729_0_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → 8729_0_createTree_InvokeMethod(x2, x3, x4, x5)
8632_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 8632_0_createTree_InvokeMethod(x2, x3, x4, x5)
8495_0_createTree_Return(x1) → 8495_0_createTree_Return
8690_0_createNode_InvokeMethod(x1, x2) → 8690_0_createNode_InvokeMethod
8672_0_createNode_InvokeMethod(x1, x2) → 8672_0_createNode_InvokeMethod
Filtered duplicate args:
8486_0_createTree_LE(x1, x2, x3) → 8486_0_createTree_LE(x1, x3)
Cond_8486_0_createTree_LE1(x1, x2, x3, x4) → Cond_8486_0_createTree_LE1(x1, x2, x4)
Cond_8486_0_createTree_LE(x1, x2, x3, x4) → Cond_8486_0_createTree_LE(x1, x2, x4)
Filtered unneeded arguments:
Cond_2376_0_createNode_NE(x1, x2) → Cond_2376_0_createNode_NE(x1)
Filtered all non-integer terms:
8486_0_createTree_LE(x1, x2) → 8486_0_createTree_LE(x2)
List(x1, x2) → List
Cond_8486_0_createTree_LE(x1, x2, x3) → Cond_8486_0_createTree_LE(x1, x3)
8558_1_createTree_InvokeMethod(x1, x2, x3, x4) → 8558_1_createTree_InvokeMethod(x1, x2, x3)
8665_1_createTree_InvokeMethod(x1, x2, x3, x4) → 8665_1_createTree_InvokeMethod(x1, x2, x3)
Cond_8486_0_createTree_LE1(x1, x2, x3) → Cond_8486_0_createTree_LE1(x1, x3)
8685_1_createTree_InvokeMethod(x1, x2, x3, x4) → 8685_1_createTree_InvokeMethod(x1, x2, x3)
8632_0_createTree_InvokeMethod(x1, x2, x3, x4) → 8632_0_createTree_InvokeMethod(x2, x3)
8729_0_createTree_InvokeMethod(x1, x2, x3, x4) → 8729_0_createTree_InvokeMethod(x2, x3)
8752_0_createTree_InvokeMethod(x1, x2, x3, x4) → 8752_0_createTree_InvokeMethod(x2, x3)
2272_0_random_IntArithmetic(x1, x2) → 2272_0_random_IntArithmetic(x2)
Filtered all free variables:
2226_0_random_ArrayAccess(x1, x2) → 2226_0_random_ArrayAccess(x1)
ARRAY(x1, x2) → ARRAY(x1)
2272_0_random_IntArithmetic(x1) → 2272_0_random_IntArithmetic
2376_0_createNode_NE(x1) → 2376_0_createNode_NE
Filtered ground terms:
Cond_2272_1_createNode_InvokeMethod1(x1, x2) → Cond_2272_1_createNode_InvokeMethod1(x1)
2272_1_createNode_InvokeMethod(x1) → 2272_1_createNode_InvokeMethod
Cond_2272_1_createNode_InvokeMethod(x1, x2) → Cond_2272_1_createNode_InvokeMethod(x1)
Combined rules. Obtained 8 rules for P and 18 rules for R.
Finished conversion. Obtained 8 rules for P and 18 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
(0) -> (1), if ((x0[0] →* java.lang.Object(Tree(x0[1], x1[1]))))
(0) -> (2), if ((x0[0] →* java.lang.Object(Tree(x0[2], x1[2]))))
(1) -> (1), if ((x0[1] →* java.lang.Object(Tree(x0[1]', x1[1]'))))
(1) -> (2), if ((x0[1] →* java.lang.Object(Tree(x0[2], x1[2]))))
(2) -> (0), if ((x0[2] →* x0[0]))
5566_0_MIRROR_STORE(x0[0]) → 3787_0_MIRROR_NULL(x0[0])
3787_0_MIRROR_NULL(java.lang.Object(Tree(x0[1], x1[1]))) → 3787_0_MIRROR_NULL(x0[1])
3787_0_MIRROR_NULL(java.lang.Object(Tree(x0[2], x1[2]))) → 5566_0_MIRROR_STORE(x0[2])
3787_0_mirror_NULL(NULL) → 3971_0_mirror_Return
3787_0_mirror_NULL(NULL)
5566_0_MIRROR_STORE(x0[0]) → 3787_0_MIRROR_NULL(x0[0])
3787_0_MIRROR_NULL(java.lang.Object(Tree(x0[1], x1[1]))) → 3787_0_MIRROR_NULL(x0[1])
3787_0_MIRROR_NULL(java.lang.Object(Tree(x0[2], x1[2]))) → 5566_0_MIRROR_STORE(x0[2])
3787_0_mirror_NULL(NULL)
3787_0_mirror_NULL(NULL)
5566_0_MIRROR_STORE(x0[0]) → 3787_0_MIRROR_NULL(x0[0])
3787_0_MIRROR_NULL(java.lang.Object(Tree(x0[1], x1[1]))) → 3787_0_MIRROR_NULL(x0[1])
3787_0_MIRROR_NULL(java.lang.Object(Tree(x0[2], x1[2]))) → 5566_0_MIRROR_STORE(x0[2])
From the DPs we obtained the following set of size-change graphs:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x2[0] > 0 →* TRUE)∧(x2[0] →* x2[1]))
(1) -> (2), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x1[1] →* x0[2])∧(x2[1] →* x1[2]))
(1) -> (9), if ((8558_0_createNode_InvokeMethod →* 2588_0_createNode_Return)∧(x1[1] →* x0[9])∧(x2[1] →* x1[9]))
(2) -> (5), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x0[2] →* x0[5])∧(x1[2] →* x1[5]))
(2) -> (7), if ((8558_0_createNode_InvokeMethod →* 2588_0_createNode_Return)∧(x0[2] →* x0[7])∧(x1[2] →* x1[7]))
(3) -> (4), if ((x1[3] > 0 →* TRUE)∧(x1[3] →* x1[4]))
(4) -> (0), if ((x1[4] + -1 →* x2[0]))
(4) -> (3), if ((x1[4] + -1 →* x1[3]))
(5) -> (6), if ((x1[5] > 0 →* TRUE)∧(x0[5] →* x0[6])∧(x1[5] →* x1[6]))
(6) -> (0), if ((x1[6] + -1 →* x2[0]))
(6) -> (3), if ((x1[6] + -1 →* x1[3]))
(7) -> (8), if ((x1[7] > 0 →* TRUE)∧(x0[7] →* x0[8])∧(x1[7] →* x1[8]))
(8) -> (0), if ((x1[8] + -1 →* x2[0]))
(8) -> (3), if ((x1[8] + -1 →* x1[3]))
(9) -> (5), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x0[9] →* x0[5])∧(x1[9] →* x1[5]))
(9) -> (7), if ((8558_0_createNode_InvokeMethod →* 2588_0_createNode_Return)∧(x0[9] →* x0[7])∧(x1[9] →* x1[7]))
(1) (>(x2[0], 0)=TRUE∧x2[0]=x2[1] ⇒ 8486_0_CREATETREE_LE(x2[0])≥NonInfC∧8486_0_CREATETREE_LE(x2[0])≥COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])∧(UIncreasing(COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥))
(2) (>(x2[0], 0)=TRUE ⇒ 8486_0_CREATETREE_LE(x2[0])≥NonInfC∧8486_0_CREATETREE_LE(x2[0])≥COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])∧(UIncreasing(COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥))
(3) (x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)
(4) (x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)
(5) (x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)
(6) (x2[0] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(4)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)
(7) (COND_8486_0_CREATETREE_LE(TRUE, x2[1])≥NonInfC∧COND_8486_0_CREATETREE_LE(TRUE, x2[1])≥8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])∧(UIncreasing(8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])), ≥))
(8) ((UIncreasing(8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(9) ((UIncreasing(8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(10) ((UIncreasing(8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)
(11) ((UIncreasing(8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧0 = 0∧[(-1)bso_40] ≥ 0)
(12) (8558_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[2], x1[2])≥NonInfC∧8558_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[2], x1[2])≥8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])∧(UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])), ≥))
(13) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧[(-1)bso_42] ≥ 0)
(14) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧[(-1)bso_42] ≥ 0)
(15) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧[(-1)bso_42] ≥ 0)
(16) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧0 = 0∧[(-1)bso_42] ≥ 0)
(17) (>(x1[3], 0)=TRUE∧x1[3]=x1[4] ⇒ 8486_0_CREATETREE_LE(x1[3])≥NonInfC∧8486_0_CREATETREE_LE(x1[3])≥COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])∧(UIncreasing(COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥))
(18) (>(x1[3], 0)=TRUE ⇒ 8486_0_CREATETREE_LE(x1[3])≥NonInfC∧8486_0_CREATETREE_LE(x1[3])≥COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])∧(UIncreasing(COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥))
(19) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(2)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)
(20) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(2)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)
(21) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(2)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)
(22) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(4)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)
(23) (COND_8486_0_CREATETREE_LE1(TRUE, x1[4])≥NonInfC∧COND_8486_0_CREATETREE_LE1(TRUE, x1[4])≥8486_0_CREATETREE_LE(+(x1[4], -1))∧(UIncreasing(8486_0_CREATETREE_LE(+(x1[4], -1))), ≥))
(24) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧[(-1)bso_46] ≥ 0)
(25) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧[(-1)bso_46] ≥ 0)
(26) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧[(-1)bso_46] ≥ 0)
(27) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧0 = 0∧[(-1)bso_46] ≥ 0)
(28) (>(x1[5], 0)=TRUE∧x0[5]=x0[6]∧x1[5]=x1[6] ⇒ 8665_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[5], x1[5])≥NonInfC∧8665_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[5], x1[5])≥COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])∧(UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])), ≥))
(29) (>(x1[5], 0)=TRUE ⇒ 8665_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[5], x1[5])≥NonInfC∧8665_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[5], x1[5])≥COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])∧(UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])), ≥))
(30) (x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])), ≥)∧[bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)
(31) (x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])), ≥)∧[bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)
(32) (x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])), ≥)∧[bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)
(33) (x1[5] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])), ≥)∧[(3)bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)
(34) (COND_8665_1_CREATETREE_INVOKEMETHOD(TRUE, 2422_0_createNode_Return, x0[6], x1[6])≥NonInfC∧COND_8665_1_CREATETREE_INVOKEMETHOD(TRUE, 2422_0_createNode_Return, x0[6], x1[6])≥8486_0_CREATETREE_LE(+(x1[6], -1))∧(UIncreasing(8486_0_CREATETREE_LE(+(x1[6], -1))), ≥))
(35) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧[1 + (-1)bso_50] ≥ 0)
(36) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧[1 + (-1)bso_50] ≥ 0)
(37) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧[1 + (-1)bso_50] ≥ 0)
(38) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧0 = 0∧[1 + (-1)bso_50] ≥ 0)
(39) (>(x1[7], 0)=TRUE∧x0[7]=x0[8]∧x1[7]=x1[8] ⇒ 8665_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[7], x1[7])≥NonInfC∧8665_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[7], x1[7])≥COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])∧(UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])), ≥))
(40) (>(x1[7], 0)=TRUE ⇒ 8665_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[7], x1[7])≥NonInfC∧8665_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[7], x1[7])≥COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])∧(UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])), ≥))
(41) (x1[7] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)
(42) (x1[7] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)
(43) (x1[7] + [-1] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)
(44) (x1[7] ≥ 0 ⇒ (UIncreasing(COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])), ≥)∧[(3)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)
(45) (COND_8665_1_CREATETREE_INVOKEMETHOD1(TRUE, 2588_0_createNode_Return, x0[8], x1[8])≥NonInfC∧COND_8665_1_CREATETREE_INVOKEMETHOD1(TRUE, 2588_0_createNode_Return, x0[8], x1[8])≥8486_0_CREATETREE_LE(+(x1[8], -1))∧(UIncreasing(8486_0_CREATETREE_LE(+(x1[8], -1))), ≥))
(46) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧[(-1)bso_54] ≥ 0)
(47) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧[(-1)bso_54] ≥ 0)
(48) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧[(-1)bso_54] ≥ 0)
(49) ((UIncreasing(8486_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧0 = 0∧[(-1)bso_54] ≥ 0)
(50) (8558_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[9], x1[9])≥NonInfC∧8558_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[9], x1[9])≥8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])∧(UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])), ≥))
(51) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧[(-1)bso_56] ≥ 0)
(52) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧[(-1)bso_56] ≥ 0)
(53) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧[(-1)bso_56] ≥ 0)
(54) ((UIncreasing(8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧0 = 0∧[(-1)bso_56] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(8558_0_createNode_InvokeMethod) = [-1]
POL(8672_0_createNode_InvokeMethod) = [-1]
POL(8690_0_createNode_InvokeMethod) = [-1]
POL(8486_0_createTree_LE(x1)) = [-1]
POL(0) = 0
POL(8495_0_createTree_Return) = [-1]
POL(2226_1_createNode_InvokeMethod(x1)) = [-1]
POL(2226_0_random_ArrayAccess(x1)) = [-1]
POL(java.lang.Object(x1)) = [-1]
POL(ARRAY(x1)) = [-1]
POL(8558_1_createTree_InvokeMethod(x1, x2, x3)) = [-1]
POL(2537_0_createNode_InvokeMethod) = [-1]
POL(8632_0_createTree_InvokeMethod(x1, x2)) = [-1]
POL(2576_0_createNode_InvokeMethod) = [-1]
POL(2667_0_createNode_InvokeMethod) = [-1]
POL(8665_1_createTree_InvokeMethod(x1, x2, x3)) = [-1]
POL(8729_0_createTree_InvokeMethod(x1, x2)) = [-1]
POL(8752_0_createTree_InvokeMethod(x1, x2)) = [-1]
POL(2422_0_createNode_Return) = [-1]
POL(2588_0_createNode_Return) = [-1]
POL(8486_0_CREATETREE_LE(x1)) = [2] + [2]x1
POL(COND_8486_0_CREATETREE_LE(x1, x2)) = [1] + [2]x2
POL(>(x1, x2)) = [-1]
POL(8558_1_CREATETREE_INVOKEMETHOD(x1, x2, x3)) = [1] + [2]x3
POL(8665_1_CREATETREE_INVOKEMETHOD(x1, x2, x3)) = [1] + [2]x3
POL(COND_8486_0_CREATETREE_LE1(x1, x2)) = [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_8665_1_CREATETREE_INVOKEMETHOD(x1, x2, x3, x4)) = [1] + [2]x4
POL(COND_8665_1_CREATETREE_INVOKEMETHOD1(x1, x2, x3, x4)) = [2]x4
8486_0_CREATETREE_LE(x2[0]) → COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])
8486_0_CREATETREE_LE(x1[3]) → COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])
COND_8665_1_CREATETREE_INVOKEMETHOD(TRUE, 2422_0_createNode_Return, x0[6], x1[6]) → 8486_0_CREATETREE_LE(+(x1[6], -1))
8665_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[7], x1[7]) → COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])
8486_0_CREATETREE_LE(x2[0]) → COND_8486_0_CREATETREE_LE(>(x2[0], 0), x2[0])
8486_0_CREATETREE_LE(x1[3]) → COND_8486_0_CREATETREE_LE1(>(x1[3], 0), x1[3])
8665_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[5], x1[5]) → COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])
8665_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[7], x1[7]) → COND_8665_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 2588_0_createNode_Return, x0[7], x1[7])
COND_8486_0_CREATETREE_LE(TRUE, x2[1]) → 8558_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x1[1], x2[1])
8558_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[2], x1[2]) → 8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[2], x1[2])
COND_8486_0_CREATETREE_LE1(TRUE, x1[4]) → 8486_0_CREATETREE_LE(+(x1[4], -1))
8665_1_CREATETREE_INVOKEMETHOD(2422_0_createNode_Return, x0[5], x1[5]) → COND_8665_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 2422_0_createNode_Return, x0[5], x1[5])
COND_8665_1_CREATETREE_INVOKEMETHOD1(TRUE, 2588_0_createNode_Return, x0[8], x1[8]) → 8486_0_CREATETREE_LE(+(x1[8], -1))
8558_1_CREATETREE_INVOKEMETHOD(2588_0_createNode_Return, x0[9], x1[9]) → 8665_1_CREATETREE_INVOKEMETHOD(8558_0_createNode_InvokeMethod, x0[9], x1[9])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x1[1] →* x0[2])∧(x2[1] →* x1[2]))
(2) -> (5), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x0[2] →* x0[5])∧(x1[2] →* x1[5]))
(9) -> (5), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x0[9] →* x0[5])∧(x1[9] →* x1[5]))
(1) -> (9), if ((8558_0_createNode_InvokeMethod →* 2588_0_createNode_Return)∧(x1[1] →* x0[9])∧(x2[1] →* x1[9]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((8558_0_createNode_InvokeMethod →* 2422_0_createNode_Return)∧(x1[1] →* x0[2])∧(x2[1] →* x1[2]))
(1) -> (9), if ((8558_0_createNode_InvokeMethod →* 2588_0_createNode_Return)∧(x1[1] →* x0[9])∧(x2[1] →* x1[9]))